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• A data stream is a (massive) sequence of data
- Single Pass: Each record is examined at most 

once
- Small Space:  Log or polylog in data stream size
- Small time: Low per-record processing time (O(1) 

to polylog N)
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• Sub-linear space  
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Sketches
• Count-Min Sketch [Cormode and Muthukrishnan 2005] 

- Point queries, heavy hitters (frequent items) 

• AMS Sketch [Alon et. al. 1999] 
- Frequency moments 

• Count Sketch [Charikar et. al. 2002] 
- Join size queries, self join size queries [Rusu and 

Dobra 2007] 

• …
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Sketches
• Sub-linear space  

- Fast update and query time 

• Answer queries approximately 

• Linear transformation of the data frequencies

• Ephemeral 
- Answer queries on current version of data stream 



Query Back in Time
• The ability to query on historical data is necessary 

for analyzing trends&change pattern of data 
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Persistent Database/ 
Data Structure

• Answer queries on the past version of the database

• General technique to make data structure persistent [Driscoll et 
al. 1989], Multi-version B-tree [Becker et al. 1996,  
, Brodal et al. 2012], Time-Split B-tree [Lomet and Salzberg 1989] 

• Microsoft Immortal DB [Lomet et. al. 2005], SNAP [Shrira and Xu 
2005], Ganymed [Plattner et. al. 2006], Skippy [Shaull et. al. 
2008] and LIVE[Sarma et. al. 2010] 

• Space linear in # of updates 
- Large storage 
- Storage on disk (not in streaming setting)
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Persistent Sketch
• Historical window query

• Given a time interval (s, t], return a sketch for substream f(s, t) 

• What is the top-k/frequency moment/join size of the stream 
between s and t？

End time tStart time s

Time
Stream



High Level Ideas 
& 

Our Results 
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C[h(i)] = C[h(i)] + 1

• Given an error parameter 𝜀 

• Choose a hash function h: [n] ➝ [2/𝜀] and build a hash 
table of size 2/𝜀

Count-Min Sketch 
[Cormode and Muthukrishnan 2005]



Linear Transformation
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Linear Transformation

End time tStart time s

Stream

Cs Ct

Ct - Cs

• Linear Space

• Sketch is already an 
approximation
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Baseline Solution
• Historical window point/heavy hitters query:  

- What is frequency of “/images/space.gif” between 
day 34 and day 37 

- What are the mostly requested URLs between day 
34 and day 37”

• Error: 𝜀||f(s,t)||1 (ephemeral error) + Δ (persistent error)

• Space: proportional to (1/𝜀 + m/Δ)

• Cannot handle (self) join size queries

Size of the stream 
between s and t



Piece-wise Linear 
Approximation

• Counter changes by at most 1 at each timestamp 

• Each counter is a discrete function according to  
timestamps

t

v(t)

0
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• Historical window point/heavy hitters query:  
- What is frequency of “/images/space.gif” between 

day 34 and day 37 
- What are the mostly requested URLs between day 

34 and day 37”

• Error: 𝜀||f(s,t)||1 (ephemeral error) + Δ (persistent 
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• Historical window point/heavy hitters query:  
- What is frequency of “/images/space.gif” between 

day 34 and day 37 
- What are the mostly requested URLs between day 

34 and day 37”

• Error: 𝜀||f(s,t)||1 (ephemeral error) + Δ (persistent 
error)

• Space: proportional to (1/𝜀 + m/Δ2) in random 
stream model

PLA-based Persistent Sketch
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Estimating Join Size
• Estimating (self) join size in an ephemeral sketch: 

Σi C[i]2

• Estimating (self) join size in a persistent sketch: 
Σi (C[i] + error of Δ)2

• Bias will amplify error significantly

• Need unbiased estimator of the counter
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Sampling Based Persistent 
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Sample with  
probability 1/Δ

h(i)
Ephemeral sketch:

Historical Lists:

Query time t
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Sampling based  
AMS Sketch

• Unbiased Estimator 

• Historical window join size query:  
- What is the join size of stream 1 and stream 2 

between day 34 and day 37 

• Error: 

• Space: proportional to (1/𝜀 + m/Δ)
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•  7,000,000 requests from the 1998 World Cup web site 
access log 

• Built sketches on two attributes
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Conclusion
• Persistent sketch 

- Query on historical data 

- Sub-linear space 

• Support point/heavy hitters/join size queries 

• Provable error and space bound 

• Performs well in practice



Thanks!


