Cache-0Oblivious Hashing

Zhewel Wel
Hong Kong University of Science & Technology

Joint work with Rasmus Pagh, Ke Yi
and Qin Zhang

Dictionary Problem

® Store a subset S of the Universe U.

@ Lookup: Does x belong to S? If so, what is ifs
associated data?

@ Dynamic dictionary:
— Insertion: Include x into the dictionary.

— Deletion: Remove x from the dictionary.

Hashing

@ Idea: Store the keys in random locations.

@ Use a “hash function” & to generate and
remember random locations.

Uniform Hashing Model

@ Most analyses assume /2 to be a truly
random hash function, i.e., 7 maps each key

independently and uniformly to the hash
table.

@ Analyses match what happens on real-world
data surprisingly well;

® Mitzenmacher and Vadhan (2008) shows that
a simple hash function can be used to
achieved the same performance as a truly
random hash function does, under some mild
assumption on the randomness of the data.

Hashing with Chaining

‘ T4 S T ‘ L1

v v

L2 L3
v
L6

: Qo

@ Knuth: Cn%1+—é- Qe n/T
/ m\
C,~1+a

Hashing with Linear Probing

Insert x /

Hashing with Linear Probing

Insert r / h(x)
‘ L4 L5 Ji7 L L]

1 1

: C, ~ — -
® Knuth G

1 1

C, =~ = A
de 9 I

External Hashing (Chaining)

T4 S T L1
T L9 L10
L8 L11

v v

L9 L3

@ Block size p = 3

g
g
x
L'

h(xs)
e -
L L10
L7
L5
L9
L4 3
ks L11
L8

3
. b

l

@

External Hashing

@ Each block can accommodate b keys.

@ The cost of an operation (search, insertion) is
the number of blocks accessed (1/0s).

@ Knuth: expected 1/0 cost per operation:
1 o—Q((1-a)?b)

@ For reasonable large b, the cost is very close
to 1.

Cache-Oblivious Hashing

® Cache-Oblivious Model
— Proposed by Frigo et al. (1999).

— Similar to the I/O model, except that the
algorithm does not know the memory size
m and the block size b.

- Algorithm must be optimized for all block
sizes.

& Question: how to achieve thel + 2% pound
without knowing 5?

Our Results

@ Linear probing ignoring the blocking is naturally
cache-oblivious. However, analysis shows that
its search cost is 1 + O(a//b) 1/0s.

@ Blocked probing (Pagh et al. 2007) achieves the
desired 1 + 2~ (®)bound, under two assumptions:

- The block size b is a power of 2.

- Every block starts at a memory address
divisible by b.

Our Results

@ A lower bound shows that both conditions is
required to achieve the 1 + 27 pound;

@ If one of the two conditions is dispersed, the
best achievable bound is 1 + ©(a/b).

® Neither of these two conditions is stated in the
cache-oblivious model, but they indeed hold on
all real machines.

Linear Probing ignoring the
blocklng

--

@ Let CO,, and CO;, denote the expected 1/0
cost for a successful and an unsuccessful
search, respectively. For any block size b:

CO, =1 | @, 10
CO,=1+4+(C;, —1)/b
@ The bound is 1 + O(a/b)!

Linear Probing ignoring the
blocklng

--

@ Intuition: consider a search for z. If h(x) hits
the last position of some block, and this position
is occupied, then an extra 1/0 is needed.

@ The probability that /() hits the last position of
some block is 1/b.

@ The probability that this position is occupied

is n/r = a.

Blocked Probing

@ Assuming r is a power of two.
@ Suppose x is stored in location i,.

@ Define d(z,7) to be equal to the position of
the most significant bit in which h(z) and ¢
differ.

d(xz,i) = 0 in case i = h(x) .

Blocked Probing

o Let I(z,7) = {i|d(z,) < j}

@ I(x,j) is the aligned block of size 2’ that
contains h(x).

Blocked Probing

® Observation: under the two conditions, the
block containing z is I(z,logb).

@ Invariant 1: For j = 0,..., an operation on x
will fully traverse [(x,j) before moving to
the next j.

@ Invariant 2: each key is stored as close as
possible to h(x), i.e., If the number of keys
with hash values in I(z,7)is less than 27,
then z is stored in I(z, 7).

Operations

® Insertion

- For =0,1,2,..., search for an empty
location in I(z,j) and put = there;

- If no empty location is found, search for a
location i,/ that contains a key x’ with
hash value h(x') € I(x,j) (i.e.,d(x', i) > 7).
Swap = and z’ and continue the insertion
process with z’.

- If both attempts fail, move to the next j.

Operations

® Search

- For j=0,1,2,..., inspect I(x,j) until zis
found.

— Or an empty location is found.

- Or a key =’ with hash value h(z') & I(x,j).
@ Deletion

- Find j such that x € I(x,j)\I(z,7 —1).

-~ Check if thereis a key inI(x,57 + 1)\I(z,)
that can be stored in I(x,).

Analysis of Blocked Probing

@ Suppose we want to query Kkey x.
olet X;=yeS|hy) e l(zj);

@ We will not visit any locations outside I(z, j*),
where j* =min{j | X, < 27}.

(% E[XJ] = OéQj.

@ By Chernoff bounds,
Pr(X; > 2] < S Y e

Analysis of Blocked Probing

@ Assumption: b is a power of 2 and storage
block are aligned to multiples of b.

@ All locations in I(x,logb)can be accessed in I
I/0.

@ If the search goes on to step j* > logh, the
number of I/Os required is 27" /b.

Lower Bounds

@ Neither of the two conditions is dispensable:

- The block size b is a power of 2.

- Every block starts at a memory address
divisible by 5.

@ The best achievable bound is 1 + ©(«/b) if
— The hash table is required to work for all b.

— Or the hash table is required to work for a
single b, but an arbitrary shifting of the
starting position is allowed.

The Model

o U = |u]: the universe.

@ [, a random n-key sequence drawn from
the universe randomly and independently.

@ Assuming u > n°, then w.h.p. all keys in I,
are distinct by the birthday paradox.

@ Assume that all keys are stored in a table
of size r on the external memory (not
affecting the analysis).

@ Assume 7 = O(n).

The Block Layout

@ Boundary-Oblivious Model

® The hash table knows the block size b but
not the block boundary;

@ A block spans from ib —sto (1 +1)b — s — 1.
@ Block-Size-Oblivious Model

@ The blocks always start at positions that
are multiples of b;

@ But the hash table is required fto work for
all ‘b= s

The Model

@ The successful search for z is simulated by
two functions:

- f(z) is the position where the algorithm
makes its first probe;

- g(x) is the position of the last probe,
where key z is stored.

@ The description of f is stored in the internal
memory.

The Model

@ Observation 1: The algorithm can employ a
family of at most 2mlgu f/g.

® Observation 2: All g(x)/S are distinct for the
n keys.

@ Observation 3: If f(x)and g(x) are on
different blocks, the search for x will cost

two 1/0s.

The Model

@ For f(z) # g(x), let

{ g(x) if f(x) < g(z)
glz)+1 if f(z) > g(z)

First probe f query(x) Last probe of query(x) Last probe fqu ry(x) First probe of query(x)

e

@ If ¢'(x)is the first position of a block, at least
two I/Os are needed.

Basic Idea

@ For a random input, number of keys that
need a second probe is large;

@ For such a key z, its f(x)and g(x) are
different, and thus ¢'(x) is defined;

@ Prove that at least one block layout will
cause a large number of ¢'(x)’s to meet the
starting position of some blocks, and these
keys will need a second I/0 to query.

A Bin-Ball Game

@ Throw n balls into 7 bins independently.
@ Each ball goes to the j-th bin w.p. ;.
@ 3= (p1,...,05,) prefixed.

@ Let Z denote the number of empty blns
after nballs are thrown in.

A Bin-Ball Game

@ The bin-ball game can be used to model the
process that a prefixed hash function f maps
a random input I,,.

@ n—r+ Zis the number of keys that need a
second probe, which is at least 31 w.h.p..

A Bin-Ball Game

@ Increasing the number of hash functions
does not help, as long as n is unbounded
from m and b.

@ For a random input I,,, w.h.p. at least 77
keys need a second probe.

Lower bound for the
Boundary-Oblivious Model

® Number of ¢'(z)’s: at least 37.

@ Fors=20,...,b0— 1, there exist one s such
that ¢'(x) = ib — s.

@ Sum up (on all sand all ¢’(x)) the number of
times that a ¢'(z) hits the first position of

84

some block: at least 7 n.

@ By pigeon hole principle, there exist a s such
that the number of ¢'(x)’s that hits the first
position of some block is at least 7 .

Lower bound for the Block-
Size-0Oblivious Model

@ Number of ¢'(z)’s: at least §n.

® Consider the set P which consists of all
primes that are less thanr.

@ Fix a b € P, number of keys need a second
I/0 is at least the number of ¢'(z)’s that
are divisible by b.

Lower bound for the Block-
Size-0Oblivious Model

@ Sum up (on all b and all g'(x)) the number
of times that some g’(x) is a multiple of
some b is at least

> plal)
g'(x)

@ [(s): number of distinct prime factors of s.

@ Lemma: at least (1 — o(1)) fraction of s € |r]
has u(s) = Q(loglogr).

@ The set of all ¢'(x)’s has at least 37 distinct
values in |r].

Lower bound for the Block-
Size-0Oblivious Model

® The summation

Z u(g QQ(rloglogr)
9’ ()
@ Lemma: P is the set of all primes less than r:
Z % = loglogr + O(1)
be P
@ There exists a b, s.t. the number of ¢'(x)’s

that are multiples of bis Q(r) = Q(<2).

Open Questions

o Is the 1+ 27%®) bound optimal?

@ If the internal memory size is ©(n/b)bits,
we can achieve / I/0 worst-case query cost

(perfect hashing).
@ How about m = O(b)?

