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Figure 1. A typical structure of GNN:s.

* Embedding function f(X): map features X € R"*¥" to initial embeddings Z(?) ¢ R4,
= Graph propagation / convolution GP(Z<O); A): propagate embedding K times;

= Read-out / pooling R(Z<K>; A) (optional): pooling for graph-level tasks;

= Classification function g(-): final classification to generate predictions Y.

Expressive Power & Universality of GNNs

= Spectral GNNs: designing universal filters (e.g., ChebNet, GPRGNN, BernNet, ...).
= Spatial GNNs: designing GNNs bounded by k£-WL tests (e.g., GIN, ...).

There are works exploring relations between GNNs and geometric objects (e.g., curvature, cel-
lular sheaves) and physical concepts (e.g., oscillators).

Q: Can we define universality of spatial GNNs from a geometric perspective?

Preliminaries

Definition (Equivalent). For a given graph G = (V, E), two node embedding matrices Z 1) and
Z(2) € R"*d gre equivalent if for all (4, j) € E, HZ§:1> — Z‘ngg — HZZ(:2> - Z;-?)HQ holds.

Definition (Congruent). For a given graph G = (V, ), two node embedding matrices Z 1) and
Z(2) e R"* are congruent if for all i, € V, HZE‘:U - Zg})HQ = HZ7(L:2> — Z§?>H2 holds.

Definition (Globally Rigid). For a given graph G = (V, E), an embedding matrix Z is globally
rigid if all its equivalent embedding matrices Z’ are also congruent to Z.

Definition (Rigid). For a given graph G = (V, E'), an embedding matrix Z is rigid if all equivalent
embeddings that can be obtained by continuous motion from Z are congruent to Z.

Figure 2. Left: A globally rigid graph in R?; Right: A rigid but not globally rigid graph in R?, since it has an
equivalent but not congruent embedding.

Definition (Metric Matrix). The metric matrix of an embedding matrix Z € R"*? is defined as
Mz = (||Z;.— Z.||2);j. We also define the mapping from an embedding matrix Z to its metric
matrix M z as M , = M(Z).

Defining Spatial-Universality

Observation:
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Defining Spatial-Universality (Cont'd)

Theorem (MLPs Are Congruent-Insensitive). Given two congruent embedding matrices Z;
and Z, for any MLP,; (with biases), there always exists another MLP 5 (also with biases)
such that MLP,(Z1) = MLPy(Z9).
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Some “programs” such as M(Z y).

Spatial-Universal: It can arrange nodes with a given metric matrix!
This idea is closely related to the Distance Geometry Problem (DGP).

Distance Geometry Problem (DGP)

Given a positive integer d, a graph G = (V, F), and a symmetric hon-negative matrix M,
decide whether there exists an embedding matrix Z € R"*% such that

V(i,j) € B\ Zy, — Zj|| =M

ij°

Optimization Objective

About the Optimization Objective

= Full metric matrix: O(n?) = partial metric matrix on edges: O(m).

= For globally rigid graphs, partial metric matrix is enough to determine the “shape” of the
embedding, this modification does not weaken the expressive power.

= However, solving the DGP is NP-Hard. We can not directly arrange the nodes, thus we
introduce an error-tolerant objective:
1 9 1 9
EyZ,M,E) = §HA OMZ)-M)| 7= Z 5 (HZZ — Zj:HQ — Mij) '
(i.j)eL
= This function is closely related to the raw Stress function o, in the Multidimensional
Scaling (MDS) problem and the potential energy of spring networks.

Figure 3. A spring network.

* To align with other representative GNNs, we modify £, and add a regularization term to
get the final objective:

£(2;2"), M, E) = (1 - )Ep(Z; M, E) + | Z — 2|}
(1—a)Ey(DY?Z. M, E)+ |2z — 2|3

About the Metric Matrix

= For scenarios with prior knowledge about distances between nodes (e.g., molecular
conformation generation, or graph drawing), directly use them; for other scenarios, learn a
metric matrix.

= Qur idea is to increase the distances between dissimilar nodes and reduce the distances
between similar nodes:

1. Introduce edge attention «;; € |1, 1], when «;; — 1 < 4, j tend to belong to the same
class, and when «;; — —1 < 4, j tend to belong to different classes;

2. Map the initial embedding matrix Z0) (defined later) to a hidden matrix H;

3. Use attention mechanisms, such as a;; = tanh (aT[HZT:HH}]) or a;; = tanh (HZ-:WHJ.T:)

to learn the edge attention;
1 — O‘ij

14—&@']'—1—5

4. Then we can set M;; = |]Z§9> -~ Z;-(;))H, where ¢ is a small positive number.
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Framework

The Embedding Function

= Alinear layer f(X)= XW +1b' inlinear GNNs, or
* A two-layer MLP f(X) = o(c(XW 1 + 1b/ YW + 1b, ) in spectral GNNs.

Propagation

= QOur goal is to design a propagation method that minimizes the objective.
= |t's non-convex. Following related works, we employ the stationary point iteration method.

= By computing the gradient, setting it to zero, rearranging the terms, rewriting it as an
iteration form, substituting 1 — o with § to allow more flexibility, it leads to:

ZE+) = (1 —a)D712AD Y22 %) 4 D" V2L yp D2 ZF) 4 0z,

where H = Ao M & M(D~1/22)°~! and Ly = diag(H1) — H.
= And we have the message-passing form:

(k) Mm;; (2" - 2"
z" = (1 - ) D Z;id. 8 ) Zk)( : ik)) +az)
jeN(i) VY JeEN(7) \/dideZz‘: /\/d_i_Zj: /\/GTJH2

Optional Linear and Non-linear Transformations

We may incorporate linear and non-linear transformations after each propagation step. In our
experiments without pre-designed metric matrices, such as node classification, we utilize three
designs from the GCNII model: a linear transformation, the identity mapping, and a non-linear
transformation (ReLU).

The Classification Function

We use a linear layer ¢(Z5)) = ZE)W 1 1b7 as the final classification function.

Experiments

We have done the “Arranging Nodes with Given Metric Matrices” experiments on synthetic
graphs, supervised node classification and graph regression experiments on real-world graphs.

Arranging Nodes with Given Metric Matrices

= We generate two Stochastic Block Model (SBM) graphs, one homophilic and one
heterophilic, consisting of four blocks with 50 nodes in each block.

= The node features are sampled from two 2-dimensional Gaussian distributions.

original original

* If i and j are in the same class, we set M;; = 0; otherwise, we set M;; = 5.
= We pass the node features through 8 MGNN layers, with o« = 0.05 and 5 = 0.5.
= For visualization results, please refer to the smaller posters below or our paper.

Supervised Node Classification and Graph Regression

= Our MGNN model performs well, and the results are promising.
= For experiment details and results, please refer to the smaller posters below or our paper.

*Zhewei Wel is the corresponding author. Contact us: cuiguanyu@ruc.edu.cn; zhewei@ruc.edu.cn
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Experiment |: Arranging Nodes with Given Metric Matrices Experiment Il: Supervised Node Classification

- We pass the node features through 8 MGNN layers, with o« = 0.05 and 8 = 0.5. After each round of
propagation, we visualize the results.

- For all datasets except ogbn-arxiv, we generate 10 random splits with train/valid/test ratio of
60%/20%/20%. For the ogbn-arxiv dataset, we generate 10 random splits using the get _idx_split ()
function provided by the official package.

- We then tune the hyper-parameters 100 times for each model on each dataset. (Please refer to our
paper for the detailed ranges of hyperparameters.)

- We train each model for a maximum of 1500 epochs, with early stopping set to 100, on each dataset
and report the results after hyper-tuning.

MGNN-2

Table 1. The results (accuracy with standard deviation) of the supervised node classification experiments. Boldface results
indicate the best model on each dataset, and underlined results are second best models.

Non-Graph Spectral Spatial (Non-Spectral) MGNN
Linear MLP GCN SGC APPNP PointNet GAT GIN GCNII PGNN LINKX
Figure 1. Visualization results of MGNN propagation layers.
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S/ Experiment lll: Graph Regression

SGC-2 SGC-3 SGC-4 SGC-5 SGC-6 SGC-7 SGC-8

- We utilized the publicly available train/validation/test split of the ZINC-subset dataset.

- For all models, we set the number of hidden units to 64. We limit the training of each model to a
maximum of 500 epochs. A batch size of 512 is utilized, and early stopping is implemented after 50
epochs on each dataset.

Figure 2. Visualization results of SGC propagation layers.

- We conduct hyperparameter tuning for each model on each dataset and repeat this process 100
times. (Please refer to our paper for the detailed ranges of hyperparameters.)

APPNP-1 APPNP-2

- To enhance reliability, we repeat the whole process five times and calculate the mean MAE (Mean
Absolute Error) and standard deviation for each model.

Table 2. The results of the graph regression experiments.

APPNP-1 APPNP-2 APPNP-3 APPNP-4 APPNP-5 APPNP-6 APPNP-7 APPNP-8

GCN GAT GIN PointNet MGNN
0.614310.0200 0.6458 +0.0647 0.4410+0.0065 0.5293 10,0135 0.4751 10,0112

Figure 3. Visualization results of APPNP propagation layers.

MGNN: Graph Neural Networks Inspired by Distance Geometry Problem *Zhewei Wel is the corresponding author. Contact us: cuiguanyu@ruc.edu.cn; zhewei@ruc.edu.cn



